Search results

1 – 6 of 6
Article
Publication date: 30 September 2021

Shuai Wang, Fei Zhao, Bo Zhou and Shifeng Xue

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving…

143

Abstract

Purpose

A distributed piezoelectric actuator (DPA) improving the deformation performance of wing is proposed. As the power source of morphing wing, the factors affecting the driving performance of DPA were studied.

Design/methodology/approach

The DPA is composed of a substrate beam and a certain number of piezoelectric patches pasted on its upper and lower ends. Utilizing the inverse piezoelectric effect of piezoelectric material, the DPA transfers displacement to the wing skin to change its shape. According to the finite element method and piezoelectric constitutive equation, the structure model of DPA was established, and its deformation behavior was analyzed. The accuracy of algorithm was verified by comparison with previous studies.

Findings

The results show that the arrangement way, length and thickness of piezoelectric patches, the substrate beam thickness and the applied voltage are the important factors to determine the driving performance of DPA.

Research limitations/implications

This paper can provide theoretical basis and calculation method for the design and application of distributed piezoelectric actuator and morphing wing.

Originality/value

A novel morphing wing drove by DPA is proposed to improve environmental adaptability of aircraft. As the power source achieving wing deformation, the DPA model is established by FEM. Then the factors affecting the driving performance are analyzed. The authors find the centrosymmetric arrangement way of piezoelectric patches is superior to the axisymmetric arrangement, and distribution center of the piezoelectric patches determines the driving performance.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 September 2022

Chenyang Mao, Bo Zhou and Shifeng Xue

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on…

Abstract

Purpose

Piezoelectric materials are widely used as actuators, due to the advantages of quick response, high sensitivity and linear strain-electric field relationship. The previous work on the piezoelectric material plate structures is not enough; however, such structures play a very important role in the practical design. In this paper, the actuation performance of piezoelectric laminated plate actuator (PLPA) is analyzed based on Galerkin method to parametric study the shape control.

Design/methodology/approach

In this paper, the actuation performance of PLPA is analyzed based on Galerkin method to parametric study the shape control. The stress components of the matrix plate are formulated based on electro-mechanical coupling theory and Kirchhoff's classical laminated plate theory. The effectiveness of the developed method is validated by the comparison with finite element method.

Findings

The actuation performance of PLPA and its influencing factors are numerically analyzed through the developed method. The deflection of PLPA is reasonably increased by optimizing the electric fields, the piezoelectric patch and the matrix plate.

Originality/value

The Galerkin method can be used for engineering applications more easily, and it does not require to rebuild the calculation model as finite element method during the calculation and analysis of PLPA. This paper is a valuable reference for the design and analysis of PLPAs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 29 June 2022

Fan Lin, Jianshe Peng, Shifeng Xue and Jie Yang

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity…

Abstract

Purpose

In this paper, the authors aim to propose an effective method to indirectly determine nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials, and then study the nonlinear free torsional vibration of Al–1%Si shaft.

Design/methodology/approach

In this study the authors use BoxLucas1 model to fit the determined-experimentally nonlinear elastic normal stress–strain constitutive relationship curve of Al–1%Si, a typical case of isotropic nonlinear elasticity materials, and then derive its nonlinear shear stress-strain constitutive relationships based on the fitting constitutive relationships and general equations of plane-stress and plane-strain transformation. Hamilton’s principle is utilized to gain nonlinear governing equation and boundary conditions for free torsional vibration of Al–1%Si shaft. Differential quadrature method and an iterative algorithm are employed to numerically solve the gained equations of motion.

Findings

The effect of four variables, namely dimensionless fundamental vibration amplitude ϑmax, radius α and length β, and nonlinear-elasticity intensity factor δ, on frequencies and mode shapes of the shafts is obtained. Numerical results are in good agreement with reference solutions, and show that compared with linearly elastic shear stress-strain constitutive relationships of the shafts made of the nonlinear elasticity materials, its actual nonlinearly elastic shear stress-strain constitutive relationships have smaller torsion frequencies. In addition, but β having opposite hardening effect, the rest of the four variables have softening effect on nonlinearly elastic torsion frequencies. Eventually, taking into account nonlinearly elastic shear stress-strain constitutive relationships, changes of the four factors, i.e. ϑmax, α, β and δ, cause inflation and deflation behaviors of mode shapes in nonlinear free torsional vibration.

Originality/value

The study could provide a reference for indirectly determining nonlinear elastic shear stress-strain constitutive relationships for nonlinear elasticity materials and for structure design of torsional shaft made of nonlinear elasticity materials.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 March 2021

Fei Zhao, Xueyao Zheng, Shichen Zhou, Bo Zhou and Shifeng Xue

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Abstract

Purpose

In this paper, a three-dimensional size-dependent constitutive model of SMP Timoshenko micro-beam is developed to describe the micromechanical properties.

Design/methodology/approach

According to the Hamilton's principle, the equilibrium equations and boundary conditions of the model are established and according to the modified couple stress theory, the model is available to capturing the size effect because of the material length scale parameter. Based on the model, the simply supported beam was taken for example to be solved and simulated.

Findings

Results show that the size effect of SMP micro-beam is more obvious when the dimensionless beam height is similar or the larger of the value of loading time. The rigidity and strength of the SMP beam decrease with the increasing of the dimensionless beam height or the loading time. The viscous property of SMP micro-beam plays a more important role with the larger dimensionless beam height. And the smaller the dimensionless beam height is, the more obvious the shape memory effect of the SMP micro-beam is.

Originality/value

This work implies prediction of size-dependent thermo-mechanical behaviors of the SMP micro-beam and will provide a theoretical basis for design SMP microstructures in the field of micro/nanomechanics.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 16 July 2019

Jinghuan Zhang, Shan Wang, Wenfeng Zheng and Lei Wang

By drawing on the research paradigm of collective action that occurs in physical space, the present study aims to explore the antecedent predictors of network social mobilization…

1030

Abstract

Purpose

By drawing on the research paradigm of collective action that occurs in physical space, the present study aims to explore the antecedent predictors of network social mobilization – feeling of injustice – and discuss the emotional mechanism of this prediction: mediating effect of anger and resentment.

Design/methodology/approach

Micro-blog postings about network social mobilization were collected to develop the dictionary of codes of fairness, anger and resentment. Then, according to the dictionary, postings on Sina Weibo were coded and analyzed.

Findings

The feeling of injustice predicted network social mobilization directly. The predictive value was 27% and 33%, respectively during two analyses. The feeling of injustice also predicted social mobilization indirectly via anger and resentment. In other words, anger and resentment account for the active mechanism in which the feeling of injustice predicts network social mobilization. Mediating effect value was 29.63% and 33.33% respectively.

Research limitations/implications

This study is our first exploration to use python language to collect data from human natural language pointing on micro-blog, a large number of comments of netizen about certain topic were crawled, but a small portion of the comments could be coded into analyzable data, which results in a doubt of the reliability of the study. Therefore, we should put the established model under further testing.

Practical implications

In the cyberspace, this study confirms the mechanism of network social mobilization, expands and enriches the research on social mobilization and deepens the understanding of social mobilization.

Social implications

This study provides an empirical evidence to understand the network social mobilization, and it gives us the clue to control the process of network social mobilization.

Originality/value

This study uses the Python language to write Web crawlers to obtain microblog data and analyze the microblog content for word segmentation and matching thesaurus. It has certain innovation.

Details

International Journal of Crowd Science, vol. 3 no. 2
Type: Research Article
ISSN: 2398-7294

Keywords

Article
Publication date: 16 January 2017

Changjun Han, Chunze Yan, Shifeng Wen, Tian Xu, Shuai Li, Jie Liu, Qingsong Wei and Yusheng Shi

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines…

1083

Abstract

Purpose

Selective laser melting (SLM) is an additive manufacturing process suitable for fabricating metal porous scaffolds. The unit cell topology is a significant factor that determines the mechanical property of porous scaffolds. Therefore, the purpose of this paper is to evaluate the effects of unit cell topology on the compression properties of porous Cobalt–chromium (Co-Cr) scaffolds fabricated by SLM using finite element (FE) and experimental measurement methods.

Design/methodology/approach

The Co-Cr alloy porous scaffolds constructed in four different topologies, i.e. cubic close packed (CCP), face-centered cubic (FCC), body-centered cubic (BCC) and spherical hollow cubic (SHC), were designed and fabricated via SLM process. FE simulations and compression tests were performed to evaluate the effects of unit cell topology on the compression properties of SLM-processed porous scaffolds.

Findings

The Mises stress predicted by FE simulations showed that different unit cell topologies resulted in distinct stress distributions on the bearing struts of scaffolds, whereas the unit cell size directly determined the stress value. Comparisons on the stress results for four topologies showed that the FCC unit cell has the minimum stress concentration due to its inclined bearing struts and horizontal arms. Simulations and experiments both indicated that the compression modulus and strengths of FCC, BCC, SHC, CCP scaffolds with the same cell size presented in a descending order. These distinct compression behaviors were correlated with the corresponding mechanics response on bearing struts. Two failure mechanisms, cracking and collapse, were found through the results of compression tests, and the influence of topological designs on the failure was analyzed and discussed. Finally, the cell initial response of the SLM-processed Co-Cr scaffold was tested through the in vitro cell culture experiment.

Originality/value

A focus and concern on the compression properties of SLM-processed porous scaffolds was presented from a new perspective of unit cell topology. It provides some new knowledge to the structure optimization of porous scaffolds for load-bearing bone implants.

Details

Rapid Prototyping Journal, vol. 23 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 6 of 6